Algebra I Curriculum
Gasconade County R-2 School District

Grade Level: 9-12					Subject: Math -- Algebra 1
Month	Unit	Mathematics Missouri Learning Standards	Key Mathematics and Academic Vo cabulary	MathLinks to New MLS	Essential Questions
August	Unit 1	SSE A 1 SSE A 2 REI A1 NQ B3 a NQ B5 NQ B3 b NQ B3 c NQ B4	algebraic expression variables term factors power product exponent base equivalent expressions reciprocals distributive property like terms simplest form coefficient	Item Specificatio n Reports 6-12 Missouri Learning Standards 7-12 Math Glossary Missouri EOC Math Reference Sheet End of Course Blueprints MAP Grade Level Blueprints	The student will be able to interpret parts of an expression, such as terms, factors, and coefficients. The student will be able to use the structure of an expression to identify ways to rewrite it. The student will be able to identify equivalent equations. The student will be able to label quantities with appropriate terms such as rates, time, length, area and capacity with the appropriate level of accuracy. The student will be able to convert units.

September		IF B4	coordinate system ordered pair x-coordinate y-coordinate relation mapping domain range independent variable dependent variable function discrete function continuous function vertical line test function notation nonlinear function intercepts y-intercept x-intercept line symmetry extrema relative minimum relative maximum end behavior	The student will relate the domain and range of a function to its graph. The student will represent a function using function notation, and understand that $f(x)$ denotes the elements of the range of a function f that correspond to the elements of the domain. The student will understand that the input and output values of a function correspond to (x, y) values on the Cartesian coordinate plane.
IF A1 b The student will use function notation to evaluate functions for inputs				
in their domains.				

November	UNIT 4	LQE B4 LQE B5 LQE B6 IF C7 IF B6 IF B5 NQ B3 d LQE A3 CED A2	sequence terms of a sequence arithmetic sequence common difference piecewise function constraint linear extrapolation standard form point-slope form	The student will recognize arithmetic sequence and relate it to linear functions. The student will identify and graph piecewise-defined functions. The student will write an equation of a line in slope-intercept form given the slope and one point, or given two points. The students will use appropriate scales for the x \& y axes. The student will write equations of lines in standard form and point-slope form.
December		$\begin{aligned} & \text { IF B5 } \\ & \text { IF B3 } \end{aligned}$	parallel lines perpendicular lines	The student will write an equation of the line that passes through a given point, and is parallel or perpendicular to a given line.

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline & & & & \\
\hline \text { January } & & \begin{array}{l}\text { DS A1 } \\
\text { DS A4 b } \\
\text { DS A5 a } \\
\text { DS A5 b } \\
\text { DS A6 }\end{array} & \begin{array}{l}\text { bivariate data } \\
\text { scatter plot } \\
\text { correlation } \\
\text { association } \\
\text { line of fit } \\
\text { linear interpolation }\end{array} & \begin{array}{l}\text { The student will investigate relationships between quantities by using } \\
\text { points on scatter plots, and use lines of fit to make and evaluate } \\
\text { predictions. }\end{array} \\
& & \text { DS A8 } & & \begin{array}{l}\text { The student will determine whether a data set or situation illustrates } \\
\text { correlation } \\
\text { causation }\end{array}
$$ \\

correlation or causation.\end{array}\right]\)| The student will write equations of best-fit lines using linear |
| :--- |
| regression, and write equations of median-fit lines. |

	6.1 6.2 6.3 6.4 6.5	LQE A3 REI C6 REI B4 CED A3 REI B4 REI B5 REI B4 REI B5 CED A3 IF C8	independent dependent inconsistent substitution elimination	graphing. The student will solve systems of equations by using substitution. The student will solve systems of equations by using elimination with addition. The student will apply systems of equations to solve real-world problem, and label answers with appropriate units.
March	UNIT 7 7.1 7.2 7.3	SSE A2 NQ A1 APR A1 SSE A2 NQ A1 NQ B5 NQ A1 NQ A2 SSE A2 CED A1	monomial constant properties of exponents *product, power, power of products properties of exponents *quotient, power of quotient, zero power, neg. exponent scientific notation rational exponents radicals exponential equations	The student will simplify monomials using the multiplication properties of exponents. The student will divide monomials using the properties of exponents. The student will simplify monomials containing negative and zero exponents. The student will evaluate and rewrite expressions involving rational exponents. The student will solve equations involving expressions with rational exponents. The student will identify parts of an expression such as terms, factors,

