2nd Grade Math Curriculum Unit Gasconade County R-2 School District

Grade Level: 2			Subject: Math		
Month	Mathematics Missouri Learning Standards	Key Mathematics and Academic Vocabulary	MathLinks to New MLS	Essential Questions	
August	2.RA.A.1 2.NBT.B.9 2.NBT.C.11	fact family addend sum difference add subtract equation equal sign commutative property of operations number sentence model	Item Specification ReportsK-5 Missouri Learning Standards6-12 Missouri Learning Standards6-12 Missouri Learning StandardsK-6 Math Glossary7-12 Math GlossaryMissouri EOC Math Reference SheetEnd of Course BlueprintsMAP Grade Level Blueprints	I can add and subtract within 20 fluently. I can use the relationship between addition and subtraction to solve problems. I can write and solve problems involving addition and subtraction within 100.	
September	2.RA.A.1 2.NBT.B.9 2.NBT.C.11 2.NBT.A.3 2.RA.B.2a 2.RA.B.2b 2.RA.B.2c 2.RA.B.3	equation equal sign sum difference digit add addend fact family subtract		I can add and subtract within 20 fluently. I can use the relationship between addition and subtraction to solve problems. I can write and solve problems involving addition and subtraction within 100. I can count within 1000 by 1's, 10's, and 100's starting with any number. I can determine if a set of objects has an odd or even number of members.	

		odd even expression row column model	I can count by 2's to 100 starting with any even number. I can express even numbers as pairings/groupings of two, and write an expression to represent the number using addends of 2. I can express even numbers as being composed of equal groups and write an expression to represent the number with two equal addends. I can find the total number of objects arranged in a rectangular array with up to five rows and five columns, and write an equation to represent the total as a sum of equal addends.
October	2.NBT.B. 9 2.NBT.C.11 2.RA.A.1 2.NBT.A.3 2.NBT.B.6 2.NBT.B.10	sum difference digit fact family add addend subtract equation equal sign model regroup	I can use the relationship between addition and subtraction to solve problems. I can write and solve problems involving addition and subtraction within 100. I can add and subtract within 20 fluently. I can count within 1,000 by 1's, 10's, and 100's starting with any number. I can add and subtract within 100 fluently. I can add or subtract mentally 10 or 100 to or from a given number within 1,000.
November	2.NBT.A.3 2.NBT.B.6 2.NBT.B.10 2.NBT.C.11 2.NBT.A.1 2.NBT.A.2 2.NBT.A.4	sum difference regroup fact family addend add subtract equation equal sign digit model	I can count within 1,000 by 1's, 10's, and 100's starting with any number. I can add and subtract within 100 fluently. I can add or subtract mentally 10 or 100 to or from a given number within 1,000. I can write and solve problems involving addition and subtraction within 100. I can understand three-digit numbers are composed of 100's, 10's, and 1's. I can understand that 100 can be thought of as 10 tens - called a "hundred".

		ones tens hundreds thousand greater than less than place value base ten compose/ decompose numbers expanded form standard form number name/word form	I can read and write numbers to 1,000 using number names, base ten numerals, and expanded form.
December	2.NBT.A.1 2.NBT.A.5 2.NBT.B.8 2.NBT.B.9	greater than symbol (>) less than symbol (<) compare sum equal sign (=) value ones tens hundreds digit place value base ten compose numbers decompose numbers	I can understand three-digit numbers are composed of 100's, 10's, and 1's. I can compare 2 three-digit numbers using the symbols >, =, or <. I can add or subtract within 1,000 and justify the solution. I can use the relationship between addition and subtraction to solve problems.

		difference sum model	
January	2.NBT.B.8 2.NBT.B.9 2.NBT.B.7 2.GM.B.4	difference regroup equation equal sign (=) sum model commutative and associative property of operations column regroup standard units yardstick measure inch centimeter length meter meter stick foot yard	I can add or subtract within 1,000 and justify the solution. I can use the relationship between addition and subtraction to solve problems. I can add up to 4 two-digit numbers. I can measure the length of an object by selecting and using appropriate tools.
February	2.GM.B.4 2.GM.B.5 2.GM.B.6 2.GM.B.7 2.GM.C.8 2.GM.C.9	standard units yardstick measure inch metric units of measurement customary units of measurement	I can measure the length of an object by selecting and using appropriate tools. I can analyze the results of measuring the same object with different units. I can estimate lengths using units of inches, feet, yards, centimeters, and meters. I can measure to determine how much longer one object is than another.

		centimeter length meter meter stick foot yard to estimate an estimate measuring tools/device qualitative change difference model number line sums differences model	I can use addition and subtraction within 100 to solve problems involving lengths that are given in the same units. I can represent whole numbers as lengths on a number line and represent whole number sums and differences within 100 on a number line.
March	2.GM.C.8 2.GM.C.9 2.DS.A.1 2.DS.A.2 2.DS.A.4 2.DS.A.5 2.DS.A3 2.NBT.A.3 2.GM.D.10 2.GM.D.11 2.GM.D.12 2.GM.D.13	number line sums differences inches centimeters model data line plot picture graph bar graph number line x axis y axis scale axis labels	 I can use addition and subtraction within 100 to solve problems involving lengths that are given in the same units. I can represent whole numbers as lengths on a number line and represent whole number sums and differences within 100 on a number line. I can create a line plot to represent a set of numeric data given a horizontal scale marked in whole numbers. I can generate measurement data to the nearest whole unit and display the data in a line plot. I can solve problems using information presented in line plots, picture graphs and bar graphs. I can draw conclusions from line plots, picture graphs and bar graphs.

		title	categories.
		AM PM hour minute hour hand minute hand analog clock digital clock colon cent penny nickel dime quarter dollar bills (1's, 5's, 10's) value symbol combination tens place value hundreds ones thousand greater than	I can count within 1000 by 1s,10s, and 100s starting with any number. I can tell and write time from analog and digital clocks to the nearest five minutes using a.m. and p.m. I can describe a time shown on a digital clock representing hours and minutes and relate a time shown on a digital clock to the same time on an analog clock. I can find the value of combination of dollar bills, quarters, dimes, nickels and pennies using \$ and cent sign appropriately. I can find combinations of coins that equal a given amount.
April	2.GM.C.9 2.GM.D.12 2.GM.D.13 2.NBT.A.3 2.GM.A.1a 2.GM.A.1b 2.GM.A. 2	cent penny nickel dime quarter dollar bills (1's, 5's, 10's)	I can find the value of combination of dollar bills, quarters, dimes, nickels and pennies using \$ and cent sign appropriately. I can find combinations of coins that equal a given amount. I can represent whole numbers as lengths on a number line and represent whole number sums and differences within 100 on a number line.

2 GM A 20	value		
2.GIVI.A.3a	symbol	I can count within 1000 by 1s 10s, and 100s starting with any number	
	combination	Four count within 1000 by 10,100, and 1000 starting with any humber.	
	number line	I can recognize and draw shapes having specified attributes such as a given	
	tens	number of angles or sides.	
	place value		
	hundreds	I can identify triangles, quadrilaterals, pentagons, hexagons, circles, and cubes.	
	ones	Loop identify the factor of O dimensional abiants	
	thousand greater than	I can identify the faces of 3 dimensional objects.	
	Sime	I can partition a rectangle into rows and columns of same size squares and count	
	differences	to find the total number of squares	
	model		
		I can partition circles and rectangles into two, three, or four equal shares and	
	sides	describe the shares and the whole.	
	face		
	pyramid	I can demonstrate that equal shares of identical wholes need not have the same	
	2 dimensional	shape.	
	3 dimensional		
	triangle		
	quadrilateral		
	pentagon		
	hexagon		
	attributes		
	angle		
	circle		
	cube		
	rectangle		
	rhombus		
	row		
	column		
	partition		
	aivide		
	one third		
	thirds		

	one half halves one fourth fourths equal shares whole vertical diagonal horizontal include "parts of geometric figures" when teaching lesson	
Мау		